JST-CREST “Extreme Big Data” Project (2013-2018)
Future Non Sllo Ex'rr'eme Big Da‘ra Scnermflc Apps

Ultra Large Scale
Graphs and Social
Infrastructures

Massive Sensors and

Data Assimilation in

Weather Prediction
e

Lar'ge Scale
Metagenomics

Given a top-class Issues regading

Co-Des @ Architectural,
supercomputer, [eBoBag | EBD System Software ; ;
b . ysten By = algorithmic, and
ow fast can we ﬁ% incl. EBD Object System JESFC/ . g

accelerate next Sragh Stare - >ys Ie”? > O:{ ware
generation big evolution:
data c.f. Clouds? | - v v vt

f Convergenr Architecture (Phases 1~4) Use of GPUs?

Large C'apacn‘y NVM, High-Bisection NW
Cloud IDC o

- W Supercomputers
Very low BW & Efficiency I ComputedBatch-Oriented

Highly available, resilient |) More fragile

The Graph500 - June 2014 and June 2015

K Computer #1 Tokyo Tech[EBD CREST] Univ. Kyushu [Fujisawa
Graph CREST], Riken AICS, Fujitsu NN

73% total exec 700,000 CPU Core

64 nodes 65536 nodes

(Scale 30) (Scale 40) v
LLNL-IBM Sequo

| List | Rank | _GTeps | implemencation JRIERTSNETEYE iSB“e"t';%r;t‘;Pnﬁ’zm IEE

~ 150(.| timewaitin 1.6 Petabyte mem , §
2 Communi'| - communication 20GB/s Tofu NW

— 1000 —

£

= 500 I

? B T

2 0-

Q

©

w

November 2013 4 5524.12 Top-down only V_/eak scaling
“Brain-class” graph
June 2014 1 17977.05 Efficient hybrid
November 2014 2 Efficient hybrid
June 2015 1 v | ldiles Ll

Compression

Large Scale Graph Processing Using NVM [iwabuchi, IEEE BigData2014]

1. Hybrid-BFS (Beamer’11) 2. Proposal (GR@
EBD Algorithm Kernels DRAM / .

Switching two approaches NVM S

Holds highly accessed data Holds fU” snze I G

raph

Top-down ﬁ @ [Bottom-up

PPN ¢

Nau Nall
Nfrontier < B Nsrontier > p

|
of frontiersin g, #ofallvertices:n,, Parameter:a, 8 Load h|gh|y accessed gra ph data before BFS
Limit of DRAM Only

3. Experiment 260 —— -
S 4.1
CPU Intel Xeon E5-2690 X 2 L850 PN T
T
DRAM 256 GB k5 & 4.0 {—DRAM + EBD-1/0 s
VM EBD-1/0 2TB X 2 D830 DRAM Only
S o L
www.crucial.com, TUCH I -8 2- 0 S
- / - x 8 S & 4 times larger graph with
mSATA | .| mSATA S 2 1.0 —
SSD sSD 2=, 6.9 % of degradation

RAID Card (RAID 0)

W www.adaptec.com

23 24 25 26 27 28 29 30 31
SCALE (# vertices = 25CALE)

Ranked 3™ Z e
in Green Graph500 (June 2014)

>4

GPU'baSEd DiStribUtEd Sorting EBD Algorithm Kernels

[Shamoto, IEEE BigData 2014, IEEE Trans. Big Data 2015]

e Sorting: Kernel algorithm for various EBD processing
e Fast sorting methods

— Distributed Sorting: Sorting for distributed system w ok &
» Splitter-based parallel sort \—/ﬁﬁ

* Radix sort
* Merge sort

— Sorting on heterogeneous architectures

* Many sorting algorithms are accelerated by many cores and high memory bandwidth.

* Sorting for large-scale heterogeneous systems remains unclear

 We develop and evaluate bandwidth and latency reducing GPU-based HykSort on
TSUBAME2.5 via latency hiding

— Now preparing to release the sorting library

GPU implementation of splitter-
based sorting (HykSort)

Weak scaling performance (Grand
Challenge on TSUBAME?2.5)

— 1~1024 nodes (2~ 2048 GPUs)

— 2 processes per node

— Each node has 2GB 64bit integer
C.f. Yahoo/Hadoop Terasort:
0.02[TB/s]

— Including I/O

Performance prediction

(o))
o
1

Keys/second(billions)

K20x x4 faster than K20x

N
o
L

N
o
1

0

500 1000 1500 20000 500 1000 1500 2000
of proccesses (2 proccesses per node)

HykSort 1thread
4 HykSort 6threads
HykSort GPU + 6threads

w
o
|

geillions)

Keys/second

x1.4

x3.61

x389

0 500 1000

1500 2000

of proccesses (2 proccesses per node)

HykSort 6threads
HykSort GPU + 6threads .
®PCle_10
+PCle_100
%4 PCle_200
PCle_50
Prediction of our implementation

x2.2 speedup compared to
CPU-based
implementation when the
of PCl bandwidth
increase to 50GB/s

PCle_#: #GB/s bandwidth
of interconnect between
CPU and GPU

8.8% reduction of overall
runtime when the
accelerators work 4 times
faster than K20x

} GPU + NVM + PCle SSD Sorting
our new Xtr2sort library [H.Sato et.al. SC15 Poster]

250,000,000

num records [10°? records]

PAainlN
)
200,000, £y
in-cora TGP
T
<
L]
T 150,000,000 1
Q
o
=
= Xtr2sort
£ GPU+CPU+NVM
80 100,000,000 T e emmm————_
E PEvE—; ,—’—__ -
'Ah"_t__—'_‘l ———————————————
50,000,000 — _;—-—-—%
'-'H-—-——-l<¢’ CPU+NVM
‘l:- = " A ='~'= _______________
F.-ﬁ [= — .‘
0 1 T T
0 10 20

=#=in-core-cpu(18)
~#=in-core-cpu(36)
=#=in-core-cpu(54)
=*=in-core-cpu(72)
=#=in-core-gpu
~#-out-of-core-cpu+libaio(18)
=+=out-of-core-cpu+libaio(36)
= out-of-core-cpu+libaio(54)

out-of-core-cpu+libaio(72)

N—,‘-o ut-of-core-cpu+pio(18)

-
~#-out-of-core-cpu+pio(36)

out-of-core-cpu+pio(54)
out-of-core-cpu+piol72}
out-of-core-gpu
xtr2sort+libaio

xtr2sort+pio

chunk i

Single Node Xeon

2 socket 36 cores

128GB DDR4
K40 GPU (12GB)
SSD PCle card

(2.4TB)

H2D

D2H | H2wW R

H2D

D2H

H2W | WR

i+3 RD

D2H | H.

R2H

H2D

D2H | H2

Object Storage Design in OpenNVM [Takatsu et al GPC
2015]

* New interface- Sparse address
space, atomicbatch operations Region Region
and persistent trim

1 2

* Simple design by fixed-size Region |
enabled by sparse address space
and persistent trim

— Free’ed by persistent trim and no
reuse

746Kops/sec

Object Creation Performance wit
Optimizations

800 - 128 reservations + 32 initializations

— Enough region size to store one object

* Optimizationtechniques for)/0\04
object creation i 600 2 8x
— Bulk reservation and bulk initialization é 400 / 178 reservationss
XFS 15.6 Kops/s 200 o _ 1.5x
DirectFS 61.3 Kops/s 0 S . . Basellme .
Proposal 746 Kops/s ! 2 4# thread8 16 32

Fuyumasa Takatsu, Kohei Hiraga, and Osamu Tatebe, “Design of object storage using OpenNVM for high-performance distributed file
system”, the 10th International Conference on Green, Pervasive and Cloud Computing (GPC 2015), May 4, 2015

Concurrent B+Tree Index for Native
NVM-KVS [Jabri]

- Enable range-queries support

for KVS running natively on In-memory B+
Tree

NVM like fusionio ioDrive

- Design of Lock-free concurrent
B+Tree

. Lock-free operations— search, SR e W0k DAEhEEE
insert and delete NVM (Fusion-io flash device)

i Dy n a m i C re b a I a n Cl n g Of t h e Tre e '8 Avg latency (10000 KV p'air, B+Tree branching factor:'256, fixed key size: 40B)

* Nodes to be split or merged are | s —

frozen until replaced by new [ek
nodes

* Asynchronous interface using
future/promise in C++11/14

Latency: milliseconds
o g e - =
= o [==] - n =

o
n

o

number of sectors (512B)

Performance Modeling of a Large Scale Asynchronous Deep Learning System

under Realistic SGD Settings

Yosuke Oyama?, Akihiro Nomura?, Ikuro Sato?, Hiroki Nishimura3, Yukimasa Tamatsu3, and Satoshi MatsuokalDENSO
1Tokyo Institute of Technology 2DENSO IT LABORATORY, INC. 3DENSO CORPORATION

Background Proposal and Evaluation
Deep Convolutional Neural Networks (DCNNs) have

We propose a empirical performance model for an ASGD

achieved stage-of-the-art performancein various training system on GPU supercomputers, which predicts
machine learning tasks such as image recognition CNN computation time and time to sweep entire dataset
* Asynchronous Stochastic Gradient Descent (SGD) — Considering “effective mini-batch size”, time-averaged mini-
method has been proposed to accelerate DNN training batch size as a criterion for training quality
— It may cause unrealistic training settings and * Our model achieves 8% prediction error for these metrics
degrade recognition accuracy on large scale in average on a given platform, and steadily choose the
systems, due to large non-trivial mini-batch size fastest configuration on two different supercomputers
which nearly meets a target effective mini-batch size
g 35 =0—48 GPUs 0.8 52 m 5e+02 sec
— = £ 1e+03 sec
2 30 ~8-1GPU 807 02 o 0 26+03 sec
< °=’ 25 g 06 | ¢ 5e+03 sec
= I 5 §o © \ 1e+04 sec
=y 5 20 c Y w £
9 3 S o4 5 . . B 2e+04 sec
= § 15 E T ModelA | 5 & The best configuration | ™ 5e+04sec
L: 10 . / 203 €8 Bi he shorteds B 1e+05 sec
-3 Worse than 1 GPU training § 02 Model8 | 58 to achieve the shortes
L > © o1 ~B—Model C epoch time
I I I I
0 100 200 300 400 500 600 0 1) 3 4 5 6 7 3 9 10 11 10 - 20f] 30 40
Validation Errgr 6} ILSVRC 2012 Number of samples processed in one iteration Predicted Epoch Time of ILSVRC 2012 Classification Task:
Classification Task on Two Platforms: Measured Time (So_l'd) and Predicted Time (Dashed) Shaded area indicate the effective mini-batch size
Trained 11 layer CNN with ASGD method of CNN Computation of Three 15-17 Layer Models is in 1384 25%

2017 Q2 TSUBAME3.0 Towards Exa & Big Data

. “Everybody’s Supercomputer” — High Performance (15~20 Petaflops, ~4PB/s Mem, ~1Pbit/s
NW), innovative high cost/performance packaging & design, in mere 100m?...

. “Extreme Green” — 9~10GFlops/W power-efficient architecture, system-wide power control,

advanced cooling, future energy reservoir load leveling & energy recovery E El El 2
. “Big Data Convergence” — Extreme high BW &capacity, deep memory Il |_ H | | i |,
hierarchy, extreme 1/O acceleration, Big Data SW Stack 2013 ' | H H H
. . : TSUBAME2.5 4
for machine learning /DNN, graph processing, ... upgrade ‘ Bl B E il
. “Cloud SC” — dynamic deployment, container-based 5.7PF DFP 2017 TSUBAME3.0
node co-location & dynamic configuration, resource /17.1PF SFP 15~20PF(DFP)~4PB/s Mem BW

20% power
reduction

9~10GFlops/W power efficiency

elasticity, assimilation of public clouds... Big Data & Cloud Convergence

. “Transparency” - full monitoring &
user visibility of machine
& job state,

accountability i
via reproducibility JEEHE*

2010 TSUBAME2.0
2.4 Petaflops #4 World
“Greenest Production SC”

72013 TSUBAME-KFC Large™s _
#1 Green 500 Big Data Analytics

BSPF/rack Industrial Apps

2006 TSUBAME1 .0
80 Teraflops, #1 Asia #7 World S
“Everybody’s Supercomputer’ 5511 AcM Gordon Bell Prize /DL upgrade ->

Comparison of Machine Learning / Al Capabilities

REaE SN

Tokyo Institute of TecMobgy ST C

ﬁj\'iih&‘ij:/ FI'fL dUEAl
P..i‘l"'}ﬂ HAE TR

RIK=H RIKEN Advanced Institute for Computational Sci

>

(effectively more l ’ |

B due to optimized
Bl O o\ Stack on K Computer (2011)

TSUBAME2.5(2013) GPUs)

+TSUBAME3.0(2017) 8000GPUs -1

Deep Learning
FP32 11.4 Petaflops

Deep Learning / él Capabilities BG/Q Sequoia (2011)
FP16+FP32 up to 100 Petaflops 22 Petaflops SFP/DFP
+ up to 100PB online storage

2015 Proposal to MEXT — Big Data and HPC Convergent Infrastructure

=> “Nationoal Big Data Science Center” (Tokyo Tech GSIC)

 “Big Data” currently processed managed by domain laboratories => No longer scalable
« HPCIHPC Center => Converged HPC and Big Data Science Center

 People convergence: domain scientists + data scientists + CS/Infrastructure => Big data science center
- Data services including large data handling, big data structures e.g. graphs, ML/DNN/AI services...

Present old style data science 2017Q1 TSUBAME3.0+2.5
Domai — 2013 TSUBAME2.5 ! l
in labs segregated data facilities Upgrade Green&Big Data 60~80PF DNN
No mutual collaborations + HPCI Leading Machine |
Inefficient, not scalable with Main reason: We 5.7Petaflops 17PF DN

Ultra-fast memory
network, I/0

Not enough data scientists have shared

resource HPC centers
but no “Data Center”
per se

ational Labs
With Data

Convergence of
top-tier HPC
and Big Data

Infrastructure

100Gbps L2
Connection to

commercial clouds

Archival
Long-Term
Object Store

Goal 100 Petab_yte;l

~----------------

‘----—
AR

amazon

Virtual Multi-Institutional Data Science => People Convergence webservices"

TSUBAME4 beyond 2021~2022 K-in-a-Box (Golden Box)

BD/EC Convergent Architecture
1/500 Size, 1/150 Power, 1/500 Cost, x5 DRAM+ NVM

10 Petaflops, 10 Petabyte Hiearchical Memory (K: 1.5PB),
10K nodes
50GB/s Interconnect (200-300Tbps Bisection BW)
(Conceptually similar to HP “The Machine”)

Datacenter in a Box
Large Datacenter will become “Jurassic”

Acceleration of EBD Processing (1)
e Large Capacity — Multi-Terabytes, Petabytes, Exabytes

* Kernel algorithms for discrete data — graph, sort, etc.

e EBD Characteristics

e Sparse and random data structure
* Involvefrequent and abundant data transfer

e EBD Solutions (research)
* High capacity at low power: non-volatile memory, deep memory hierarchy

* High bandwidth: fast on-package memory + memory hierarchy+
Supercomputer Network (>100Gbps injection, Petabits bisection)
+ bandwidth reducing algorithms for EBD

* Low Latency Our research: define & invent
* |atency reduction =>memory 3-D stacking, EBD architecture + algorithm
fast on-package memory +low latency network system sw
* Latency hiding => many core + many threading
+ latency reducing algorithms for EBD

Implies low latency and
high bandwidth access

Acceleration of EBD Processing (2)

* Classification algorithms — statistical modeling/optimization,
Machine Learning

* EBD Characteristics: iterative numerical optimization

» Kernel may be sparse (e.g., SVM) or dense (e.g., Deep Learning)
 Parallelism difficultdue to massive sample size (10~100 billion images)

e EBD Solutions (our research)

* Approach: Employtraditional and new HPC/supercomputer parallelization
and acceleration strategies

e Sparse algorithms — high bandwidth processors (e.g., GPU) w/stacked
memory and on-package memory + memory hierarchy + supercomputing
network + bandwidth reducing algorithms (sparse linear algebra)

* Dense algorithms — many-core high FLOPS processor (e.g., GPU) + L'm't?d
algorithmic advances for strong scaling showing

* High volume data — utilize “burst buffer” technology (incl. Clouds) today

Optimized Graphgoo program (1) — Bandwidth Reducing Algorithm
Sparse Matrix Representation with Bitmap

» Problem

Since the partitioned graph is a hyper sparse matrix, we need efficient

hyper sparse matrix representation for large scale distributed graph
processing.

» Our proposal: Sparse Matrix Representationwith Bitmap
Enables compression of row indexes and fast access to each row.

Comparison with other methods

Data size of row index (MB/node) Solgfrf?jrmgnlce%
(8064 partition, Scale 36) o (MRSty Sl)3’328
CSR (Compressed Sparse Row) 1806 Z 3000
DCSC 861 5 2500 %25
Coarse Index + Skip List 309 g j:gg
Bitmap (Proposal) 337

DCSC Coarse Index Bitmap
+ Skip List

Optimized Graphgoo program (2) — Bandwidth Reducing Algorithm
Vertex Reordering for Bitmap Optimization

» Ouridea
Createsreordered vertex number by sorting vertices by degree.

Use reordered number for bitmap access and original number for other
processing.

» Result
16% speedup by reduction of bitmap data, 28% speedup by localized
memory access, and 49% speedup in total. (8064 nodes)

Performance
Bitmap Access (8064 nodes, Scale 36)

3500 3,328

3000

2,596

N
8]
o
o

2000

Unnecessary part

<

(ii) Reduce the size of Bitmap

i
\
Performance (GTEPS)

= =
o (2]
o o
o o

500

Proposal Onlyremove No reorder Convert at
unnecessary last

(i) Localize memory access

