
JST-CREST	“Extreme	Big	Data”	Project	(2013-2018)

Supercomputers
Compute&Batch-Oriented

More fragile

Cloud IDC
Very low BW & Efficiency
Highly available, resilient

Convergent Architecture (Phases 1~4) 
Large Capacity NVM, High-Bisection NW

PCB

TSV Interposer
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2Tbps HBM
4~6HBM Channels
1.5TB/s DRAM & 
NVM BW

30PB/s I/O BW Possible
1 Yottabyte / Year

EBD System Software
incl. EBD Object System
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Large Scale 
Metagenomics

Massive Sensors and 
Data Assimilation in 
Weather Prediction

Ultra Large Scale 
Graphs and Social 
Infrastructures

Exascale Big Data HPC 

Co-Design

Future Non-Silo Extreme Big Data Scientific Apps

Graph	Store

EBD	Bag
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Given	a	top-class	
supercomputer,	
how	fast	can	we	
accelerate	next	
generation	big	
data	c.f.	Clouds?

Issues	regading
Architectural,	
algorithmic,	and	
system	software	
evolution?

Use	of	GPUs?



The	Graph500	– June	2014	and	June	2015	
K	Computer	#1	Tokyo	Tech[EBD	CREST] Univ.	Kyushu	[Fujisawa	

Graph	CREST],	Riken	AICS,	Fujitsu

List Rank GTEPS Implementation

November 2013 4 5524.12 Top-down only

June 2014 1 17977.05 Efficient hybrid

November 2014 2 Efficient hybrid

June 2015 1 38621.4 Hybrid + Node 
Compression

*Problem size is 
weak scaling

“Brain-class” graph

88,000 nodes, 
700,000 CPU Cores
1.6 Petabyte mem
20GB/s Tofu NW

≫

LLNL-IBM Sequoia
1.6 million CPUs
1.6 Petabyte mem
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Large	Scale	Graph	Processing	Using	NVM
2.	Proposal1.	Hybrid-BFS	(	Beamer’11	)

CPU Intel Xeon E5-2690 × 2

DRAM 256 GB

NVM EBD-I/O 2TB × 2

3.	Experiment
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RAID 
Card

RAID Card (RAID 0)
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SSD

× 8
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SSD
・・・

www.adaptec.com

www.crucial.com/

4	times	larger	graph	with
6.9	%	of	degradation

DRAM NVM

Load	highly	accessed	graph	data	before	BFS

Holds	 full	size	of	GraphHolds	highly	accessed	data

[Iwabuchi,	IEEE	BigData2014]

Top-down Bottom-up

#	of	frontiers:nfrontier，#	of	all	vertices:nall,					Parameter :	α,	β

Switching	two	approaches

Tokyo’s Institute of Technology
GraphCREST-Custom #1

is ranked

No.3

in the Big Data category of the Green Graph 500
Ranking of Supercomputers with

35.21 MTEPS/W on Scale 31

on the third Green Graph 500 list published at the
International Supercomputing Conference, June 23, 2014.

Congratulations from the Green Graph 500 Chair

Ranked 3rd
in	Green	Graph500	(June	2014)

EBD Algorithm Kernels



GPU-based	Distributed	Sorting
[Shamoto,	IEEE	BigData 2014,	IEEE	Trans.	Big	Data	2015]
• Sorting:	Kernel	algorithm	for	various	EBD	processing
• Fast	sorting	methods

– Distributed	Sorting:	Sorting	for	distributed	system
• Splitter-based	parallel	sort
• Radix	sort
• Merge	sort

– Sorting	on	heterogeneous	architectures
• Many	sorting	algorithms	are	accelerated	by	many	cores	and	high	memory	bandwidth.

• Sorting	for	large-scale	heterogeneous	systems	remains	unclear

• We	develop	and	evaluate	bandwidth	and	latency	reducingGPU-based	HykSort on	
TSUBAME2.5	via	latency	hiding
– Now	preparing	to	release	the	sorting	library

EBD Algorithm Kernels



K20x x4 faster than K20x
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x1.4

x3.61

x389

0.25
[TB/s]

Performance	prediction

x2.2 speedup	compared	to	
CPU-based	

implementation	when	the	
#	of	PCI	bandwidth	
increase	to	50GB/s

8.8% reduction	of	overall	
runtime	when	the	

accelerators	work	4	times	
faster	than	K20x

• PCIe_#:	#GB/s	bandwidth	
of	interconnect	between	
CPU	and	GPU

• Weak	scaling	performance	(Grand	
Challenge	on	TSUBAME2.5)

– 1	~	1024	nodes	(2	~	2048	GPUs)
– 2	processes	per	node
– Each	node	has	2GB	64bit	 integer

• C.f.	Yahoo/Hadoop	Terasort:	
0.02[TB/s]

– Including	I/O

GPU	implementation	of	splitter-
based	sorting	(HykSort)



GPU + NVM + PCIe SSD Sorting
our new Xtr2sort library  [H.Sato et.al. SC15 Poster]

Single Node Xeon 
- 2 socket 36 cores
- 128GB DDR4
- K40 GPU (12GB)
- SSD PCIe card 

(2.4TB)

in-core GPU

Xtr2sort 
GPU+CPU+NVM

CPU+NVM



Object	Storage	Design	in	OpenNVM [Takatsu	et	al	GPC	
2015]

• New	interface	- Sparse	address	
space,	atomic	batch	operations	
and	persistent	trim

• Simple	design	by	fixed-size	Region	
enabled	by	sparse	address	space	
and	persistent	trim

– Free’ed by	persistent	trim	and	no	
reuse

– Enough	region	size	to	store	one	object

• Optimization	techniques	for	
object	creation

– Bulk	reservation	and	bulk	initialization

Super	
Region

Region	
1

Region		
N…

Next	Region	ID[]

…Region	
2

746Kops/sec
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#	thread

Object	Creation	Performance	with	
Optimizations

Baseline

128	reservations

128	reservations	+	32	initializations

2.8x

1.5xXFS 15.6	Kops/s
DirectFS 61.3	Kops/s
Proposal 746 Kops/s

Fuyumasa Takatsu,	Kohei Hiraga,	and	Osamu	Tatebe,	“Design	of	object	 storage	using	OpenNVM for	high-performance	distributed	file	
system”,	the	10th	International	Conference	on	Green,	Pervasive	and	Cloud	Computing	(GPC	2015),	May	4,	2015



Concurrent	B+Tree Index	for	Native	
NVM-KVS	[Jabri]

• Enable	range-queries	support	
for	KVS	running	natively	on	
NVM	like	fusionio ioDrive

• Design	of	Lock-free	concurrent	
B+Tree
• Lock-free	operations	– search,	

insert	and	delete
• Dynamic	rebalancing	of	the	Tree	
• Nodes	to	be	split	or	merged	are	

frozen	until	replaced	by	new	
nodes

• Asynchronous	interface	using	
future/promise	in	C++11/14

OpenNVM like KVS Interface

NVM (Fusion-io flash device)

NVM-KVS supporting range-queries

In-memory B+ 
Tree
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Performance	Modeling	of	a	Large	Scale	Asynchronous	Deep	Learning	System
under	Realistic	SGD	Settings

Yosuke	Oyama1,	Akihiro	Nomura1,	Ikuro Sato2,	Hiroki	Nishimura3,	Yukimasa Tamatsu3,	and	Satoshi	Matsuoka1
1Tokyo	Institute	of	Technology		2DENSO	IT	LABORATORY,	INC.		3DENSO	CORPORATION

Background
• Deep	Convolutional	Neural	Networks	(DCNNs)	have	

achieved	stage-of-the-art	performance	in	various	
machine	learning	tasks	such	as	image	recognition

• Asynchronous	Stochastic	Gradient	Descent	(SGD)	
method	has	been	proposed	to	accelerate	DNN	training

– It	may	cause	unrealistic	training	settings	and	
degrade	recognition	accuracy	on	large	scale	
systems,	due	to	large	non-trivial	mini-batch	size
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Worse	than	1	GPU	training

Validation	 Error	of	ILSVRC	 2012
Classification	 Task	 on	Two	Platforms:

Trained	11	layer	CNN	with	ASGD	method

Proposal	and	Evaluation
• We	propose	a	empirical	performance	model	for	an	ASGD	

training	system	on	GPU	supercomputers,	which	predicts	
CNN	computation	time	and	time	to	sweep	entire	dataset

– Considering	“effective	mini-batch	size”,	time-averaged	mini-
batch	size	as	a	criterion	for	training	quality

• Our	model	achieves	8%	prediction	error	for	these	metrics	
in	average	on	a	given	platform,	and	steadily	choose	the	
fastest	configuration	on	two	different	supercomputers	
which	nearly	meets	a	target	effective	mini-batch	size

Measured	Time	(Solid)	 and	Predicted	Time	(Dashed)
of	CNN	Computation	of	Three	15-17	Layer	Models

Predicted	Epoch	Time	of	ILSVRC	 2012	Classification	 Task:
Shaded	area	indicate	 the	effective	mini-batch	 size	

is	in	138±25%
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1
0

TSUBAME3.0

2006 TSUBAME1.0
80 Teraflops, #1 Asia #7 World
“Everybody’s Supercomputer”

2010 TSUBAME2.0
2.4 Petaflops #4 World

“Greenest Production SC”

2013
TSUBAME2.5 

upgrade
5.7PF DFP 

/17.1PF SFP
20% power 
reduction

2013 TSUBAME-KFC
#1 Green 500

/DL upgrade -> 1.5PF/rack

2017 TSUBAME3.0
15~20PF(DFP) ~4PB/s Mem BW
9~10GFlops/W power efficiency
Big Data & Cloud Convergence

Large Scale Simulation
Big Data Analytics

Industrial Apps2011 ACM Gordon	Bell	Prize

2017	Q2 TSUBAME3.0 Towards	Exa &	Big	Data
1. “Everybody’s	Supercomputer”	– High	Performance	(15~20	Petaflops,	~4PB/s	Mem,	~1Pbit/s	

NW),	innovative	high	cost/performance	packaging	&	design,	in	mere	100m2…
2. “Extreme	Green”	– 9~10GFlops/W	power-efficient	architecture,	system-wide	power	control,	

advanced	cooling,	future	energy	reservoir	load	leveling	&	energy	recovery
3. “Big	Data	Convergence”	– Extreme	high	BW	&capacity,	deep	memory

hierarchy,	extreme	I/O	acceleration,	Big	Data	SW	Stack	
for	machine	learning	/DNN,	graph	processing,	…

4. “Cloud	SC”	– dynamic	deployment,	container-based	
node	co-location	&	dynamic	configuration,	resource
elasticity,	assimilation	of	public	clouds…

5. “Transparency”	- full	monitoring	&	
user	visibility	of	machine
&	job	state,	
accountability	
via	reproducibility

10



Comparison of Machine Learning / AI Capabilities

X~10
>>

(effectively more 
due to optimized 
DL SW Stack on 

GPUs)

K Computer (2011)
Deep Learning

FP32 11.4 Petaflops

TSUBAME2.5(2013)

+TSUBAME3.0(2017) 8000GPUs

Deep Learning / AI Capabilities

FP16+FP32 up to ~100 Petaflops

+ up to 100PB online storage

BG/Q Sequoia (2011)
22 Petaflops SFP/DFP



2015 Proposal to MEXT - Big Data and HPC Convergent Infrastructure

=> “Nationoal Big Data Science Center” （Tokyo Tech GSIC）

• “Big Data” currently processed managed by domain laboratories => No longer scalable
• HPCI HPC Center => Converged HPC and Big Data Science Center
• People convergence: domain scientists + data scientists + CS/Infrastructure => Big data science center
• Data services including large data handling, big data structures e.g. graphs, ML/DNN/AI services…

2013 TSUBAME2.5
Upgrade

5.7Petaflops 17PF DNN

2017Q1 TSUBAME3.0+2.5
Green&Big Data 60~80PF DNN

HPCI Leading Machine
Ultra-fast memory

network, I/O

Mid-tier
Parallel FS

Storage 

Archival 
Long-Term 

Object Store

Big	Data	Science	
Applications
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National	Labs	
With	Data

Present	old	style	data	science
Domain	labs	segregated	data	facilities

No	mutual	collaborations
Inefficient,	not	scalable	with
Not	enough	data	scientists

Convergence	of
top-tier	HPC
and	Big	Data
Infrastructure

Data	Management
Big	Data	Storage
Deep	Learning
SW	Infrastructure

Virtual	Multi-Institutional	Data	Science	=>	People	Convergence
Goal 100 Petabytes

100Gbps	L2
Connection	 to
commercial	clouds

Main	reason:	We	
have	shared	

resource	HPC	centers	
but	no	“Data	Center”	

per	se



TSUBAME4	beyond	2021~2022	K-in-a-Box	(Golden	Box)
BD/EC	Convergent	Architecture

1/500	Size,	1/150	Power,	1/500	Cost,	x5	DRAM+	NVM	
Memory

10 Petaflops,	10	Petabyte	Hiearchical Memory	(K:	1.5PB),	
10K	nodes

50GB/s	Interconnect	(200-300Tbps	Bisection	BW)
(Conceptually	similar	to	HP	“The	Machine”)

Datacenter	in	a	Box
Large	Datacenter	will	become	“Jurassic”



Acceleration	of	EBD	Processing	(1)
• Large	Capacity	– Multi-Terabytes,	Petabytes,	Exabytes
•Kernel	algorithms	for	discrete	data	– graph,	sort,	etc.

• EBD	Characteristics
• Sparse	and	random	data	structure
• Involve	frequent	and	abundant	data	transfer

• EBD	Solutions	(research)
• High	capacity	at	low	power:	non-volatile	memory,	deep	memory	hierarchy
• High	bandwidth:	fast	on-package	memory	+	memory	hierarchy+
Supercomputer	Network	(>100Gbps	injection,	Petabits bisection)
+	bandwidth	reducing	algorithms	for	EBD

• Low	Latency
• latency	reduction	=>	memory	3-D	stacking,	
fast	on-package	memory	+	low	latency	network

• Latency	hiding	=>	many	core	+	many	threading	
+	latency	reducing	algorithms	for	EBD

Implies	low	latency	and	
high	bandwidth	access

Our	research:	define	&	invent
EBD	architecture	+	algorithm	
+	system	SW



Acceleration	of	EBD	Processing	(2)
• Classification	algorithms – statistical	modeling/optimization,	
Machine	Learning

• EBD	Characteristics:	iterative	numerical	optimization
• Kernel	may	be	sparse	(e.g.,	SVM)	or	dense	(e.g.,	Deep	Learning)
• Parallelism	difficult	due	to	massive	sample	size	(10~100	billion	images)

• EBD	Solutions	(our	research)
• Approach:	Employ	traditional	and	new	HPC/supercomputer	parallelization	
and	acceleration	strategies

• Sparse	algorithms	– high	bandwidth	processors	(e.g.,	GPU)	w/stacked	
memory	and	on-package	memory	+	memory	hierarchy	+	supercomputing	
network	+	bandwidth	reducing	algorithms (sparse	linear	algebra)

• Dense	algorithms	– many-core	high	FLOPS	processor	(e.g.,	GPU)	+	
algorithmic	advances	for	strong	scaling

• High	volume	data	– utilize	“burst	buffer”	technology	(incl.	Clouds)	

Limited	
showing	
today



Optimized Graph500 program (1) – Bandwidth Reducing Algorithm
Sparse Matrix Representation with Bitmap

} Problem
} Since	the	partitioned	graph	is	a	hyper	sparse	matrix,	we	need	efficient	

hyper	sparse	matrix	representation	for	large	scale	distributed	graph	
processing.

} Our	proposal:	Sparse	Matrix	Representation	with	Bitmap
} Enables	compression	of	row	indexes	and	fast	access	to	each	row.

Data	size	of	row	index	(MB/node)
(8064	partition,	Scale	36)

CSR	(Compressed	Sparse	Row) 1806
DCSC 861
Coarse	Index +	Skip	List 309
Bitmap	(Proposal) 337

2,294	 2,653	

3,328	
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Comparison	with	other	methods
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(i) Localize	memory	access

Optimized Graph500 program (2) – Bandwidth Reducing Algorithm
Vertex Reordering for Bitmap Optimization

} Our	idea
} Creates	reordered	vertex	number	by	sorting	vertices	by	degree.
} Use	reordered	number	for	bitmap	access	and	original	number	for	other	

processing.
} Result

} 16%	speedup	by	reduction	of	bitmap	data,	28%	speedup	by	localized	
memory	access,	and	49%	speedup	in	total.	(8064	nodes)

(ii)	Reduce	the	size	of	Bitmap

Bitmap Access

Unnecessary	part

16%
49%28%

Performance
(8064	nodes,	Scale	36)

Reorder


